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Synthesis and Diels–Alder reaction of a sapphyrin derivative
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Abstract—Sapphyrins participate in Diels–Alder reactions with pentacene affording novel barrelene-fused sapphyrins. The new
compounds were synthesized using traditional heating and microwave irradiation conditions. The experiments carried out under
microwave irradiation proved cleaner, affording only the monoadduct and in higher yields.
� 2006 Elsevier Ltd. All rights reserved.
Sapphyrins are among the best studied of all expanded
porphyrins. They contain an aromatic 22 p-electron aro-
matic periphery and possess a number of novel spectral
and electronic features that have made them attractive
for a range of applications, including those associated
with anion recognition.1,2 From a structural perspective,
sapphyrins also bear analogy to the contracted porphy-
rin analogues, corroles, since both contain a bipyrrolic
subunit. Recently it was shown that corroles can partici-
pate in Diels–Alder and thermal [4+4] cycloadditions
with pentacene.3 It was thus anticipated that sapphyrins
would also react with pentacene, giving rise to similar
kinds of adducts. However, when the reaction between
sapphyrin 1 and pentacene was carried out, important
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Scheme 1.
differences were observed as compared to what is found
in the case of corroles.

Sapphyrin 14 was obtained in 18% yield from the reac-
tion between an acetylated tripyrromethane dicarboxylic
acid5 and 5,5 0-diformyl-2,2 0-bipyrrole.6 This chemistry,
which is based on a known procedure, is summarized
in Scheme 1.7

The Diels–Alder reaction between sapphyrin 1 and pen-
tacene is shown in Scheme 2. It was performed under
thermal conditions by heating a 1,2,4-trichlorobenzene
solution containing a 1:5 molar ratio of these two reac-
tants at 200 �C for 5 h under a nitrogen atmosphere.8
ave irradiation.
370 084 (J.A.S.C.); e-mail addresses: sessler@mail.utexas.edu;

N
H

N

H
N

H
N

N

AcO OAc

1

l

mailto:sessler@mail.utexas.edu
mailto:jcavaleiro@dq.ua.pt


N
H

N

H
N

H
N

N

AcO OAc

N
H

N

H
N

H
N

N

AcO OAc

ii)

1

3

N
H

HN

H
NN

NH

AcO OAc

2

2

5

7

8
10

12 13
15

17

18

20

2223

25

26 27

29

28

1'

2'

3'

4'
5'

6'

7'

8'
9'

10'11'

12'

13'
14'

i)

3

H

H

+

+

5

7 18

20

22
23

1'

8'

Scheme 2. Reagents and conditions: (i) 1,2,4-trichlorobenzene, 200 �C, 5 h, N2 or 1,2,4-trichlorobenzene, MW irradiation, 200 �C, 1 h, N2. (ii) DDQ,
dry toluene, rt, 2 h, N2.
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The reaction mixture was purified by first column chro-
matography and then preparative TLC. The compound
with the higher Rf value on silica gel TLC plates was
obtained in only a trace quantity. Its mass spectrum
(FAB+, m/z = 1217) led to its assignment as a bis-
adduct.9 The main product was identified as the mono-
adduct 2 (21% yield), while the compound with lower Rf

value was shown to be 3 (5% yield).10,11 Compound 3,
which presumably resulted from the dehydrogenation
of monoadduct 2, was also obtained from the oxidation
of 2 with DDQ in dry toluene at room temperature.12

The advantages of microwave irradiation over conven-
tional heating in terms of engendering certain organic
transformations are becoming increasingly well appreci-
ated.13 For instance, it was shown quite recently that the
use of this technique results in an impressive improve-
ment in the yield of the Diels–Alder reactions between
meso-tetrakis(pentafluorophenyl)porphyrin and penta-
cene or naphthacene.14 Recognizing this and being
aware of the fact that the sapphyrin cycloadducts are
obtained in low yields under the experimental conditions
described above, we decided to use microwave irradia-
tion in the hope of improving the outcome of the reac-
tion. In fact, when a solution of sapphyrin 1 and
pentacene (1.4 equiv) was irradiated at ca. 200 �C for
1 h, compound 2 was obtained in 51% yield; compound
3 and the bisadduct were not formed.15 Thus, in this
case the use of a microwave irradiation-based procedure
allows for a shorter reaction time and obviates the need
to use a large excess of pentacene. As importantly, a
cleaner reaction mixture is obtained; this facilitates puri-
fication and allows the product to be obtained in pure
form after passage through a small silica gel column.
The structures of compounds 2 and 3 were deduced from
their 1D and 2D NMR spectra (COSY, NOESY, HSQC
and HMBC). The 1H NMR spectrum of compound 2
displays signals corresponding to the 34 aliphatic protons
of the alkyl groups on the periphery of the sapphyrin.
However, an analysis of the HSQC spectrum indicates
the existence of four other aliphatic protons (d 6.03,
6.35–6.39 and 6.85 ppm), which correlate with carbon
resonances at d 51.6, 51.7, 55.5 and 56.7 ppm. These find-
ings are consistent with the notion that cycloadduct 2 is a
reduced sapphyrin. The 1H NMR spectrum of com-
pound 2 also contains four singlets at lower frequency
values (d �1.71, �2.89, �3.16 and �3.98 ppm) corre-
sponding to the NH resonances. The COSY spectrum
shows a cross peak between the singlet at d �2.89 ppm
and those at d 9.84 and 10.34 ppm; these signals were
thus attributed to the resonances of protons H-22 and
H-23. The later resonance presents NOE cross peaks with
those of H-2 (d 6.85 ppm) and H-1 0 (d 6.35–6.39 ppm),
supporting its assignment to H-23. From the NOESY
spectrum it was also possible to confirm the close proxim-
ity between H-5 (d 10.09 ppm), H-3 (d 6.35–6.39 ppm)
and CH3-7 (d 3.99 ppm), and also between H-20 (d
10.51 ppm) and CH3-18 (d 3.88 ppm). The other two
downfield singlets at 10.43 and 11.06 ppm showed
NOE cross peaks with those of the CH2 groups of the
ethyl and acetyloxypropyl substituents, and were
assigned to the H-10 and H-15 proton resonances. The
HSQC and HMBC spectra of compound 2 allowed the
assignment of almost all the carbon resonances.

In the case of compound 3, the 1H and COSY NMR
spectra allowed the assignment of the resonances of the
aliphatic protons. However, an unequivocal assignment
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Figure 1. UV–vis spectra of sapphyrin 1, adduct 2 and compound 3 in CH2Cl2 at 3.5 lM.
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of the main features of this 1H NMR spectrum was based
on the NOESY spectrum. In the 1H NMR spectrum of
compound 3 one can observe the proton resonances of
H-22 and H-23 (two doublets with a small coupling con-
stant, J = 3.3 Hz), as well as those of H-1 0 and H-8 0 (two
singlets). In the NOESY spectrum it was possible to
observe NOE cross peaks between the doublet at d
11.40 ppm and the singlet at d 12.07 ppm, thus allowing
assignment of these resonances to H-23 and H-1 0, respec-
tively. This same spectrum allows the close proximity be-
tween H-22 (d, d 10.80 ppm) and H-20 (s, d 12.07 ppm)
to be inferred, along with interactions between this latter
proton and CH3-18 (s, d 4.35 ppm) and also between H-5
(s, d 12.25 ppm) and CH3-7 (s, d 4.52 ppm).

Comparing the 1H NMR spectra of compounds 2 and 3
it was possible to observe the disappearance of H-2 and
H-3 proton resonances and a shift to higher frequency
values for the NH, b- and meso-proton resonances of
compound 3 relative to those of 2. Most likely, this is
due to the increase in the ring magnetic anisotropy
(increasing electron ring current and planarity). A
detailed analysis of the 1H, 13C and 2D NMR spectra
of 3 allowed the assignment of the other proton and
carbon resonances.

Figure 1 shows the UV–vis spectra of sapphyrin 1, ad-
duct 2 and the dehydrogenated adduct 3 at the same
concentration (3.5 lM). The most notable features are
observed for adduct 2: it shows strong Q bands at 656
and 699 nm and its Soret band is split (445 and
456 nm), with a bathochromic shift relative to the Soret
band of sapphyrin 1 (443 nm) being observed. The split-
ting of the Soret band is ascribed to the strong asymme-
try of the molecule structure, a conclusion that is
consistent with the observed NMR spectral features.
The very small red shift is rationalized in terms of
reduced intramolecular electronic coupling between
the sapphyrin and pentacene subunits.

In conclusion, in spite of the apparent structural analo-
gies between corroles and sapphyrins, the two macro-
cyclic systems behave differently in their reaction with
pentacene. While corroles give rise to dehydrogenated
compounds derived from [4+2] mono- and bisadducts,
as well as [4+4] cycloadducts, sapphyrins give mainly
[4+2] monoadducts and do not yield detectable quanti-
ties of the corresponding [4+4] cycloadducts.
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